Research:
A Real SAD Chapter, EMF/Tamoxifen

 Back



Posted:
24 April 2000

---------- Forwarded message ----------
Date: Sat, 22 Apr 2000 16:58:49 -0500 (CDT)
From: "Roy L. Beavers" <rbeavers@llion.org>
To: emfguru <rbeavers@llion.org>
Subject: A real SAD chapter, Magnetic fields can diminish Tamoxifen
drug action (Hewitt)..
 

.......Hi everybody:

This is an old report.....  Not new.....  But I am going to promulgate it here and then put it on the website in the "research" file.....  It is more info on the melatonin/EMF link.....  The work previously discussed that was done by Dr. Robert Liburdy..... (Also on the website - in "research" file)

You may recall that I "pondered" about "why??" the U.S. Government was treating the Liburdy-melatonin research like a "skeleton in the closet"......???

Well ... one of the reasons may be what you are about to read below..... The BIG MUGWUMPS of America's RICH health bureaucracy, NCI (National Cancer Institute), did not take at all kindly to the publication of this information at the time it appeared (1997).....

It almost (perhaps should have totally) "pulled the rug out from under" a big sales push that the U.S. was putting on Tamoxifen at that time..... The U.S. had even cut short a "trial test" of the drug ... in order to beat the British to the market....!!! $$$$$$$$$

The truth is ... while the results below have been dutifully ignored by the U.S. Government and medical community ... there has been no follow up on the questions raised by these results ... and there have been no results reported which contradict them......  Three other labs have replicated this work also......!!!!

It is one of the (MANY!!!!) real sad chapters which show the U.S. Government involvement in this EMF issue on a basis OTHER then purely scientific....!!!!   $$$$$$$$$$$$$

Cheerio.....  (Thanks, dj - this is a good one!!!)

Roy Beavers (EMFguru)
roy@emfguru.com

It is better to light a single candle than to curse the darkness

People are more important than profits!!


---------- Forwarded message ----------
Date: Sat, 22 Apr 2000 13:33:23 -0700
From: dj <djhewitt@jps.net>
To: "roy@emfguru.com" <roy@emfguru.com>
Subject: Magnetic fields can diminish drug action

Source:
http://www.sciencenews.org/sn_arc97/11_29_97/fob3.htm
November 29, 1997

Magnetic fields can diminish drug action

by J. Raloff

The low-level electromagnetic fields present in some North American homes today can diminish or wipe out a widely prescribed drug's action, at least in test tubes. Researchers have found that when exposed to such fields, the drug tamoxifen lost its ability to halt the proliferation of cancer cells grown in the laboratory. Tamoxifen is a synthetic hormone used to prevent the recurrence of breast cancer.

These findings, reported last week at a Washington, D.C., meeting sponsored by the U.S. Public Health Service, also heighten concern that these electromagnetic fields (EMF) may be triggering hitherto unrecognized biological changes in people.

The new study is an extension of research that Robert P. Liburdy, a cell biologist at Lawrence Berkeley (Calif.) National Laboratory, reported on 4 years ago. At that time, he showed that while melatonin, a natural antioxidant hormone, would inhibit the growth of breast cancer cells exposed to 2 milligauss (mG) magnetic fields, its activity was essentially erased when the cells were bathed in a 12 mG field (SN: 7/3/93, p. 10).

Though the average magnetic field associated with the 60 hertz current in U.S. homes is 2 mG or lower, it can reach 12 mG in a small share of homes, such as those with unusual electric wiring. Values range as high as 1,000 mG in some occupational settings. People may also be exposed briefly to 12 mG or higher magnetic fields from electric razors and hair dryers, the sides of computer monitors, or appliances with large motors, such as refrigerators.

Liburdy and Joan D. Harland, also at the national lab, have now incubated one type of breast cancer cell treated with tamoxifen -- at concentrations typical of those found in the breast cells of women taking the drug -- in the presence of the same two field strengths.

Untreated cells appeared to grow equally well in each field. The growth rate of cells treated with tamoxifen fell by 40 percent in the 2 mG environment but exhibited no drop-off in the 12 mG field. Liburdy told Science News, "We've shown that you can overcome this field's suppression of tamoxifen, but to do it you've got to increase the drug dose by up to 10-fold."

Liburdy and Harland report their findings in Bioelectromagnetics (vol. 18, no. 8).

At last week's meeting, Liburdy also described follow-up research on a second type of breast cancer cell. Again, both melatonin and tamoxifen inhibited cell growth in a 2 mG environment but failed to do so under the influence of a 12 mG field.

At a Bioelectromagnetics Society meeting earlier this year, Liburdy presented laboratory data indicating that 12 mG magnetic fields from a computer monitor, which have a slightly different waveform than those associated with home wiring or many appliances, also erase the antiproliferative action of a hormone -- in this case, melatonin.

"As basic science, this is very interesting stuff," notes Richard Stevens of the Pacific Northwest National Laboratory in Richland, Wash. Most of the new experiments were done with the most widely studied line of breast cancer cells, he notes. Moreover, "the [magnetic] field levels used are certainly relevant to humans."

While it's far too early to suggest that residential fields pose a risk to the efficacy of tamoxifen, Stevens does argue that "this study provides the rationale for wondering about and investigating such implications."

Carl F. Blackman, a biophysicist with the Environmental Protection Agency in Research Triangle Park, N.C., has recently confirmed Liburdy's finding that magnetic fields can suppress melatonin's action and is now probing the ability of low-level fields to affect the action of tamoxifen. In other experiments, he finds that electromagnetic fields can affect the development of nerve cells when concentrations of nerve growth factor are too low.

What all these studies suggest, he says, is that "in a system that is stable and unstressed, you may see no effect of these fields. But if you stimulate it or depress it a little bit" --  with drug treatment or insufficient growth factors, for example -- "the field may show an effect."

References:

Blackman, C.F., et al. 1996. Independent replication of the 12-mG magnetic field effect on melatonin and mcf-7 cells in vitro. Eighteenth annual meeting of the Bioelectromagnetics Society. Victoria, British Columbia.

Harland, J.D. and R.P. Liburdy. 1997. Environmental magnetic fields inhibit the antiproliferative action of tamoxifen and melatonin in a human breast cancer cell line. Bioelectromagnetics 18.

Liburdy, R.P., et al. 1997. A 12mG (1.2 uTesla) magnetic field inhibits tamoxifen's oncostatic action in a second human breast cancer cell line: T47D. Second World Congress for Electricity and Magnetism in Biology and Medicine. Bologna, Italy.

Further Reading:

1995. EMFs on the brain? Science News 147(Jan. 21):44.

Adler, T. 1994. Study reaffirms tamoxifen's dark side. Science News 145(June 4):356.

Edwards, D. 1988. Cells haywire in electromagnetic field? Science News 133(April 2):216.

Ezzell, C. 1991. Power-line static. Science News 140(Sept. 28):202.

Fackelmann, K. 1994. Do EMFs pose breast cancer risk? Science News 145(June 18):388.

Raloff, J. 1995. Drug of darkness. Science News 147(May 13):300.

______. 1994. Tamoxifen puts cancer on starvation diet. Science News 146(Nov. 5):292.

______. 1994. Tamoxifen turmoil. Science News 146(Oct. 22):268.

______. 1994. Another way EMFs might harm tissues. Science News 145(Feb. 19):127.

______. 1993. EMFs run aground. Science News 144(Aug. 21):124.

______. 1993. . . . but quenched by ubiquitous hormone. Science News 144(Aug. 14):109.

______. 1992. Tamoxifen quandary. Science News 141(April 25):266.

______. 1990. EPA suspects ELF fields can cause cancer. Science News 137(June 30):404.

Schmidt, K. 1991. Fickle fields: EMFs and epidemiology. Science News 140(Nov. 30):357.

Sources:

Carl F. Blackman
U.S. Environmental Protection Agency
Mailstop Code 68
Research Triangle Park,
NC 27711-2055

Robert P. Liburdy
Life Sciences Division
Lawrence Berkeley National Laboratory
MS-Building 934
One Cyclotron Road
Berkeley, CA 94720

Richard Stevens
Health Division, K4-28
Battelle Pacific Northwest Laboratory
Richland, WA 99352


 Back to Top

Back